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Abstract 
Lightweight Innovations for Tomorrow (LIFT) is a consortium with several industries, 
universities and research institutes. It is operated by the American Lightweight Materials 
Manufacturing Innovation Institute (ALMMII). One of their projects, melt 5a, is to develop 
high silicon ductile iron (DI) alloys with improved mechanical properties and thin walled 
DI castings. These alloys have high strength to weight ratio compared to that of standard 
ductile iron (7003). Using these alloys, components can be re-designed that are much 
lighter which results in improved fuel efficiency, and reduced manufacturing costs and 
emissions.  

In this project, a differential case is being re-designed with the objective of at least 25% 
weight reduction, while meeting strength requirements. The baseline design is obtained 
from Eaton, a power management company and a supplier of automotive differentials. The 
differential case is subjected to torsional, bending and gear thrust loads. With advancement 
in computational power and cutting-edge algorithms, methods such as topology 
optimization are being used to generate optimized designs. Using such method, a design 
that is 18.5% lighter than the original design with justifiable violations of the design 
criteria, is produced. Also, the design is analyzed for high cycle fatigue using a multi-axial 
critical plane approach to identify potential crack initiation sites.  
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1 Introduction 
Stringent emission regulations and the need to reduce costs drive the development of 
lightweight vehicles. Reducing the total vehicle weight by 50 kg cuts down CO2 emissions 
by 5g per km and increases fuel economy by 2% [1]. 

A differential case is an essential component of a vehicle’s drivetrain. It acts as a structural 
member, transferring torque from the gearbox transmission to the axle shafts. It also acts 
as a carrier to internal gears, locking components, thrust washers and cross shaft. This 
component is being re-designed to reduce weight with the help of improved material 
properties. Finite Element Analysis (FEA) tools are used to analyze and investigate regions 
where material can be removed.  

1.1 Overview 

American Axle and Manufacturing (AAM) is a manufacturer of automotive drivetrain 
products. The 8.6 axle differential shown in Figure 1 is supplied by Eaton to AAM who 
provided the design criteria described in section 1.4. The improvement in mechanical 
properties of ductile iron is leveraged to re-design the differential case, a key component 
of the differential.  

 
Figure 1: (a) Differential assembly (AAM 2018) (b) Case (Eaton 2016) 

A ring gear is bolted to the flange of the case. It is meshed with a pinion gear connected to 
the engine transmission. The torque from the ring gear is transmitted to the cross shaft 
through the differential case. The case experiences torsional, bending, gear thrust and axial 
loads. The case is supported on the axial housing by bearings.  
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1.2  Terminology 

Figure 2 shows different regions labeled. The ring gear body is simulated without the tooth 
profile. This is not significant as the ring gear is bulky and stiff. Dummy bodies are created 
to simulate the contact at cross-shaft region. Internal gears are not modeled. Instead, their 
forces are applied on the contact surfaces. 

 
Figure 2: Differential case regions  

1.3 Objective and scope of work 

The main objective of this project is to reduce the weight of the differential case by at least 
25% while meeting strength and durability requirements. The process is carried in two 
different phases, topology optimization and static finite element analyses. 

1.3.1 Topology Optimization 

In the 1st phase, topology optimization technique is used with manufacturing constraints to 
obtain optimal material distribution. A design is generated for maximum stiffness using a 
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constrained fraction of bulk volume. A total of 72 load cases (36 each in forward and 
reverse scenarios) were analyzed. Altair Optistruct is used as the solver. The obtained crude 
geometry is then refined manually to create a feasible design.  

1.3.2 Static Stress and Fatigue Analyses 

In the 2nd phase, the refined geometry is parametrized and analyzed for static stress and 
fatigue life to qualify as per the design criteria. ABAQUS solver is used. The stress history 
of each surface element is then used to calculate fatigue damage and life. 

A multi-axial critical plane approach is adopted [6] to analyze the High Cycle Fatigue 
(HCF) life.  A MATLAB code is developed to search for fatigue fracture plane, critical 
plane, fatigue damage and life (number of cycles). Python scripts were developed to export 
stresses from ABAQUS and import fatigue life calculations from MATLAB. This 
facilitates visualization of all failure locations and not just the most critical one. 

1.4 Design Criteria 

The maximum torque transmitted is 5,875 N-m. The requirement is that there shouldn’t be 
any yielding at 5650 N-m torque (AAM 2018 [8]). The yield strength of the new ductile 
iron is determined to be 483 MPa. Maximum principal stresses shouldn’t exceed this limit. 
In few local regions, high stresses above 483 MPa cannot be avoided and are observed in 
the original design. At these locations, the target is set such that stresses in the new design 
do not exceed those in the original design by more than 10 %. This comes from the 
assumption that the newer material properties improve by at least 10%. At the time of 
writing this report, the new yield strength data is not available, hence, 10% improvement 
in strength is assumed. Although fatigue life requirements are not specified, high cycle 
fatigue analysis is carried out to identify potential fatigue failure regions. 

1.5 Material Model 
A linear elastic material model shown in  

Table 1 is used. Material properties are obtained from Matweb [2].  
 
Table 1: Material properties - DI 7003 

DI 7003 – Ductile iron properties Value 

Young’s modulus (MPa) 167,000 

Poission’s ratio 0.275 

Yield strength (MPa) 483 
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1.6 Loading and Boundary Conditions 

The load path of the differential case is as follows – applied force on the ring gear pitch 
circle point creates a torque. This is transmitted to the cross-shaft through the differential 
case flange and body. There is counter torque from the cross-shaft which transmits torque 
to internal gears which in turn transfer the torque to axle shafts.  

The differential operates in two different loading scenarios. One when the vehicle moves 
in forward direction while the other when the vehicle moves in reverse direction. When the 
vehicle’s in motion, the ring gear contact point (which spans over 2-3 teeth) with the pinion 
bevel gear, changes continuously. Hence, the ring gear forces are applied at 10⁰ intervals. 
So, the total number of load cases analyzed are 72 (36 each in forward and reverse cases). 
The effective ‘static’ load (equal and opposite torques) cause stresses in the differential 
case.  

1.6.1 Loading 

The differential is analyzed at maximum torque of 5,875 N-m. All units in this report are 
in metric system N, mm, MPa & Sec. Table 2 and Table 3 show the forces applied on the 
differential case assembly.  

 
Table 2: Ring gear loads - at 5,875 N-m 

Forces Radial (N) Tangential (N) Axial (N) 

Forward cases -33322 -63258 -2545 

Reverse cases 9950 63258 -39107 

 
Table 3 : Internal gear and bearing pre-loads 

Location Forces (N) 

Pinion gear force - on each Side 15,381 

Side gear forces - on each Side 26,150 

Bearing pre-load - on each Side 2,224 

Figure 3 shows ring gear loads. A cylindrical co-ordinate system is created at the center as 
shown. The tangential force is applied at pitch circle point (radius 92.75 mm) that causes 
torque. The spiral profile of the ring gear causes thrust loads in radial and axial directions. 
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The position of this load on the ring gear changes as the vehicle moves. So, it’s applied at 
10⁰ intervals. Both forward and reverse cases are analyzed. 

 
Figure 3: Ring gear loads - a) Reverse cases b) Forward cases c) Loads at 10⁰ interval 

 
Figure 4 : Internal gear and bearing pre-loads  
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Figure 4 shows the internal gear thrust loads and bearing preloads. These loads do not 
change with the position of ring gear load. Hence, they remain constant all throughout the 
loading cycle in both forward and reverse scenarios. 

1.6.2 Contacts and Constraints 

Figure 5 shows the contacts and constraints defined. Please note that constraints in this 
context means constraint equations in finite element method and not boundary conditions.  

Tie constraint is defined between the differential case flange and ring gear at the bolted 
interface – These surfaces behave as though they are ‘glued’. A multi-point constraint 
(MPC) with rigid beam formulation is defined between the center point and internal 
surfaces of dummy bodies. This can be visualized s the dummy bodies being controlled by 
a center master node. Boundary conditions are then applied to this master node. A 
frictionless contact with small sliding formulation is defined between dummy bodies and 
the differential case. Since large amount of sliding is not anticipated at this interface, small 
sliding formulation in ABAQUS helps to reduce run time. 

 
Figure 5 : Contacts and Constraints 

1.6.3 Boundary Conditions 

Figure 6 shows the applied boundary conditions. These conditions are applied with respect 
to a cylindrical co-ordinate system at the origin as shown.  The differential case is supported 
on the axle housing using bearings shown in Figure 1. Hence, it can rotate at these ends. 
The flange end bearing surface is fixed in axial and radial direction (Ur = Uz = 0). The bell 
end bearing surface is fixed only in radial direction (Ur = 0).  

The master node used to control dummy bodies is fixed only in X & Z-rotation and Y-
translation (Urx = Urz = Uy = 0) with respect to global co-ordinate system (refer to the 
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triad in Figure 6). The constrained X-rotation opposes the torque. Z-rotation and T-
translation constraints are for stability purpose in FEM. They do not see any reaction forces 
or moments. All unconstrained DOF are free to translate and rotate. 

 
Figure 6 : Boundary conditions 
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2 Initial Analysis  
The baseline case is analyzed to identify critical locations, critical load steps and to 
compare future design iterations with. mesh convergence check is done to ensure that the 
stresses are converged.  

2.1 Results 

Figure 7 and Figure 8 show the von-Mises stress plots. The contours are capped at 450 
MPa. Stresses exceeding this level are shown in grey. Critical regions are labeled as shown. 
Plots show different failure locations at several load steps.  

 
Figure 7 : Critical Locations – 1- von Mises stress plots 

 
Figure 8 : Critical locations – 2 - von Mises stress plots 
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Figure 9 : Element sets at critical locations 

Figure 9 shows the element sets created in red. This is done to identify the maximum von-
Mises stress history at these critical locations. Python scripting in ABAQUS is used to 
extract maximum stress at each location which is plotted in Figure 10. Note that there are 
several elements in each set. The maximum stress element in each set is not constant for 
each step. Hence, the obtained curves are not smooth in all cases. The 450 MPa line helps 
identify critical load steps. 

 
Figure 10 : Max. von-Mises stress at all critical locations vs step number 
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2.2 Mesh Quality 

Table 4 shows the element quality criterion. Stringent values are used compared to general 
suggested criterion [3]. Any element that violates these criteria should be warning elements 
(shouldn’t be in significant number) and not error elements. Figure 11 shows the 
highlighted elements (in yellow) that do meet the criterion in Table 4. These elements are 
not present in large numbers or at any critical locations. Table 5 describes mesh statistics 
in which it is shown that the percentage of these elements is very low. No error elements 
were present. 

 
Table 4 : Element quality criteria 

Metric Value 

Shape factor <0.1 

Tri-face corner angle <5 & > 170 

Aspect ratio >5 

Shortest edge <0.01 mm 

 

 
Figure 11 : Mesh plot showing warning elements (yellow) 



11 

2.3 Mesh Convergence  

In the previous section critical locations and load steps at which maximum von-Mises 
stresses are observed. Using this data, mesh convergence is done at these locations at their 
respective critical load steps. 

Mesh sizes ranging from 0.75 mm to 0.125 mm are locally applied at these locations and 
model is meshed.  Figure 11 shows the zoomed mesh plots with different local mesh sizes. 

 
Figure 12: Zoomed mesh plots 

 
Table 5: Mesh statistics 

 
Local 

mesh Size 
(mm) 

Global 
mesh Size 

(mm) 

No. of 
nodes 

No. of 
elements 

% Warning 
elements 

Model -1 0.75 1.85 279,561 1,462,492 0.014 

Model -2 0.5 1.85 377,042 1,978,812 0.011 

Model -3 0.375 1.6 483,570 2,563,267 0.008 

Model -4 0.25 1.6 617,117 3,262,318 0.006 

Model -5 0.125 1.5 1,119,410 5,846,390 0.007 

 



12 

2.3.1 Mesh convergence study results 

Figures 13 – 18 show the max. von – Mises stress at each critical location vs mesh size and 
percentage difference vs mesh size. Convergence is checked at multiple locations at 
multiple load steps. The convergence criteria are assumed to be satisfied when the 
percentage difference between von-Mises stress reaches below 5% compared to the 
previous mesh size. Although the percentage differences show jagged trends, local mesh 
size of 0.5 mm, in most cases provides reasonably good results. This is chosen as the run 
times with mesh sizes .375 and 0.25 mm are high (more than 48 hours for all 72 load steps).  

 
Figure 13 : Stress and percent difference v. mesh size - Flange Fillet 

 
Figure 14 : Stress and percent difference v. mesh size - Bearing Fillet 

 
Figure 15 : Stress and percent difference v. mesh size - Big window fillet - 1 
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Figure 16 : Stress and percent difference v. mesh size - Big window fillet - 2 

 
Figure 17 : Stress and percent difference v. mesh size - Internal fillet - 1 

 
Figure 18 : Stress and percent difference v. mesh size - Internal fillet – 2 

 



14 

3 Topology optimization 
Topology optimization is one of several optimization techniques used to find optimal 
material distribution. With advancement in computational power and cutting-edge 
algorithms, optimization can be done within a reasonable time. 

3.1 Theory 

A basic optimization problem is finding minima or maxima for a given curve subjected to 
a set of constraints.   

For example [4],  

Minimize    𝑓𝑓(𝑥𝑥) =  𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, . . , 𝑥𝑥𝑛𝑛) – objective function 

Subjected to    𝑔𝑔𝑖𝑖(𝑥𝑥) ≤ 0  𝑖𝑖 = 1,2. . ,𝑚𝑚 – constraints 

    𝑎𝑎 ≤ 𝑥𝑥𝑘𝑘 ≤ 𝑏𝑏   

Here,  𝑓𝑓(𝑥𝑥) is the objective function, 𝑔𝑔𝑖𝑖(𝑥𝑥) is a set of constraints and 𝑥𝑥𝑘𝑘 are the design 
variables. The function is numerically optimized by the software using gradient based or 
heuristic approaches.  

In the scope of structural optimization, an example problem can be defined with the 
objective of minimizing mass of an object while constraining deflection, stress, or natural 
frequency. 

3.1.1 Definitions 

Any optimization problem requires the following. 

• Design variable 
• Responses 
• Constraints 
• Objective 

A Design variable can be defined as a parameter that can be varied to optimize the model 

Responses are functions that need to be evaluated. These include an objective function 
and multiple functions upon which constraints can be placed 

Constraints are equations that all response functions except the objective 
function/response are subjected to. 

An Objective function is the main function that needs to be minimized or maximized. 
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3.1.2 Structural Optimization 

Topology optimization problems are solved using density or SIMP method (Solid Isotropic 
Material with Penalization) methods [4] & [5] by the optimizer.  Element density (ρ) here 
refers to a parameter that each element in the FEM model is assigned. The value of ρ varies 
from 0 to 1. This parameter is used to penalize the stiffness of the element using the 
following power law equation.  

𝐾𝐾(𝑟𝑟)  =  ρ𝑃𝑃 𝐾𝐾   - (from [4]) 

Where 𝐾𝐾(𝑟𝑟) is the penalized and 𝐾𝐾 is the original stiffness matrix. P is a penalizing factor 
which is greater than 1 (usually between 2 and 4) [4].  

The density of each element is a design variable. Responses are evaluated after penalizing 
stiffness of each element for various values of ρ. Through iteration, this determines the 
‘importance’ of that element. Finally, densities where the given objective function that is 
subjected to given constraints is satisfied are determined. Ideally, the stiffness of element 
should be 0 or 1 times the original element stiffness, indicating presence or absence of the 
element. But, numerically it is not possible to solve with such factors. Hence, power law 
method is used. Intermediate density values mean softer material is placed. Although this 
doesn’t reflect reality, a good material distribution can be obtained. 

3.2 Optimization method 

Altair Optistruct is chosen as the solver. Initial analysis in section 2.1 helped identify 
critical regions. This information is used in the optimization process as well. The main aim 
is to reduce the mass of the differential case. The optimizer is instructed to minimize strain 
energy of critical regions while constraining the total volume of the model. The 
optimization functions are defined as follows.  

3.2.1 Design variables 

Features on flange and bell ends that were not critical to the functionality are removed and 
filled with bulk material as shown in Figure 19. The bulk material is then defined as the 
design volume/space (in cyan and pink) containing design variables. The elements in non-
Design space are not penalized.  The densities of these elements in design space are varied 
in iterations by the optimizer to determine optimal material distribution. 



16 

 
Figure 19 : The volumes at flange and bell ends constitute the design space 

3.2.2 Responses 

The optimizer evaluates the defined responses in every iteration to monitor and predict 
variables. 

Volume fraction is defined as one of the responses. When the density of each element is 
varied between 0 and 1, in each iteration, the effective volume is calculated by multiplying 
actual volume of the element by the density. Volume fraction is the ratio of effective 
volume in an iteration and the initial total volume. 

Weighted local compliance of regions shown in Figure 20 is defined as another response. 
Compliance is defined as flexibility or inverse of stiffness. Collectively, the total 
compliance of the local regions is calculated by the optimizer using strain energy. If strain 
energy is more in the local regions, then compliance is high and vice versa. In this case, 
there are 72 load steps, hence total weighted total compliance is to be used. It is defined by 
the following equation. 

𝐶𝐶 = (𝑤𝑤1 ∗ 𝐶𝐶1 + ⋯+ 𝑤𝑤72 ∗ 𝐶𝐶72)/(𝑤𝑤1+ . .𝑤𝑤72) 

Where 𝐶𝐶 is the total weighted compliance, 𝐶𝐶𝑛𝑛 is the total local compliance at nth load step 
and 𝑤𝑤𝑛𝑛 is the weight assigned to that load step. In this analysis, all weights are given the 
value 1.  

In Optistruct, local compliance can be defined for each load step using DRESP 2/L and 
weighted compliance using DEQUATION ‘cards’ as shown in Figure 21. 
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Figure 20 : Critical regions for which local compliance response is defined 

 
Figure 21: FEM settings - a) Compliance response regions (in white); b) DRESP 2/L card 
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3.2.3 Optimization Constraints 

A constraint is placed on the volume fraction. The condition is that the final volume fraction 
should not exceed 35% of the bulk, initial volume.  

A manufacturing constraint to produce a design that will allow the casting die to be pulled 
is defined by setting a draw direction.  

 
Figure 22: a) Die pull out direction constraints b) Example of draw constrains from [4] 

 Also, a minimum member size of 5 mm is defined using MINDIM ‘card’ in optistruct. 

3.2.4 Objective Function 

The Objective is set to minimize weighted local compliance of regions (elements) shown 
in Figure 20. Minimizing compliance is synonymous with minimizing strain energy. So, 
the objective is to generate a design that minimized strain energy in critical areas while 
using only 35% of the initial volume.  
 

3.3 Optimization Results 

The optimizer solves all load cases in each iteration and finally outputs element densities 
that satisfies the objective. Element densities can be plotted in Hyperview that show the 
optimal material distribution. Figure 23 shows element density plots capped at 0.45 value. 
This value is not particularly of significance and used to visualize. 



19 

 
Figure 23 : Topology results - element density plots 

3.3.1   Geometry refinement 

The obtained topology from Optistruct is crude and often impractical to manufacture due 
to irregular topology. Hence, it is exported to a CAD software. In this project NX 11.0 is 
chosen as CAD tool. The imported topology is refined to create manufacturable geometry. 
The new geometry is parametrized to finalize dimensions. Due to complex topology, the 
created geometry does not exactly match the obtained topology. A few approximations 
were made to create feasible geometry. 

 
Figure 24 : Geometry refinement process 
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Figure 25 : Parametrized geometry - flange end 

 
Figure 26 : Parametrized geometry - bell end 

 
Figure 27: Parametrized geometry - barrel region 
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Figures 25-27 show different regions where dimensions are parametrized. Note that during 
topology optimization, only flange and bell end regions were optimized. Due to difficulty 
in including manufacturing constraints at barrel region, it is not optimized in topology 
optimization. However, during manual tweaking, some material in the barrel region was 
removed as shown in Figure 27. This will not affect the optimized topology at bell and 
flange ends as it is far away from those design volumes.  
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4 Re-Analysis 

4.1 Results 

In the previous section, the obtained topology only satisfies maximum stiffness/minimum 
compliance criterion. It must be further tweaked to ensure stresses at critical locations are 
not exceeding the limit. It is done manually in few iterations by analyzing again in 
ABAQUS.  

Because of the high number of parameters, the sensitivity study of each parameter wasn’t 
feasible. Key parameters were identified, and the dimensions are varied for optimizing. 
Since material is removed compared to the original design, stresses are bound to increase. 
In the next few Figures (28-35), max. stress plots are shown at all critical locations with 
contours capped at 425 MPa. Stresses above this limit are shown in grey region.  

It should be noted that the forces listed in Table 2 and Table 3 are at a torque of 5875 N-
m, but the design criteria provided by AAM dictates that the stresses are to be evaluated at 
5650 N-m torque. Since, these torques are almost same (factor of 0.96), stresses are 
evaluated at 5875 N-m which result in a conservative analysis. However, if it is needed to 
strictly adhere to the design criteria, using linear assumption (stress proportional to torque), 
stresses or safety factor can be scaled by the ratio of torques.  

The flange end tweaking was simple as critical regions are not affected by the parameters 
at this end. The bell end thickness however, affects the stresses at internal fillets (shown in 
Figure 28). The sub-pictures to the right show stress plot of few elements selected near the 
critical region to show the maximum local stress over several iterations.  

 
Figure 28 : Max. Principal stress plots -  internal fillet 1 
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Figure 29: Max. Principal stress plots -  internal fillet 2 

 
Figure 30: Max. Principal stress plots -  internal fillet 3 
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Figure 31: Max. Principal stress plots  - Flange fillet 

 

 
Figure 32: Max. Principal stress plots - Big window fillet 1 
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Figure 33 :  Max. Principal stress plots - Big window fillet 2 

 
Figure 34: Max. Principal stress plots - Window region 
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Figure 35: Max. Principal stress plots -Internal corner region 

4.2 Summary 
 

Table 6 summarizes the max. principal stresses at all critical locations and load steps. Only 
two locations (Figure 29 and Figure 35) where stresses exceeding 10% compared to 
baseline are found. These can be justified because max. stresses at other locations are much 
higher than stresses at these locations. 18.5 weight reduction is obtained. The most critical 
location is big window fillet 2 at load step 47. Also, upon re-design, it is to be ensured that 
the center of gravity (COG) shouldn’t offset radially in significant amount compared to the 
original design. In the original design, the COG is radially offset by 2.03 mm while in the 
new design, it is radially offset by 2.33 mm. The change in COG radial offset is negligible. 
 
Table 6 : Results Summary 

Load 
step Location 

Max. Principal stress (MPa) % increase in 
Max. Principal 

stress 
Current production 

model Final design 

11 Internal fillet 1 635 679 6.9 
11 Internal fillet 2 521 660 26.6 
51 Internal fillet 3 745 764 2.5 
41 Flange fillet 840 904 7.64 
13 Big window fillet 1 780 848 8.7 
47 Big window fillet 2 953 1055 10.7 
49 Window region 539 574 9.3 
49 Internal corner 569 692 21.6 



27 

5 Fatigue analysis 
Since the differential is a rotating component that experiences cyclic loading, and hence, 
fatigue analysis is of interest. Fatigue failure is a surface phenomenon and crack initiation 
occur on the surface. Hence stress histories of points on the surface are enough to compute 
fatigue life. Although fatigue life requirements are not specified, a high cycle fatigue life 
analysis is performed.   

5.1 Surface Stress extraction 

It is important to note that surface stresses are 2D in nature in most cases. For 3D elements, 
accurate stresses can be obtained only at integration points which are not on the surface of 
the element. To obtain surface stresses, a layer of ‘membrane – M3D3’ elements are created 
over the existing ‘solid’ elements. Negligible thickness of 1µm is given along with same 
elastic modulus and Poisson’s ratio as the case. Membrane elements have only 2 in-plane 
translational DOF and stress output is also of 2D in nature. Their integration points lie on 
the surface and accurate surface stresses can be obtained. The additional thickness of 1 µm 
has negligible effect on the overall stresses as they impart almost no stiffness. Also, at low 
thickness values, membrane element stresses are independent of their thickness values. 
Figure 36 shows the ‘skin’ layered on the surface.  

 
Figure 36 : Membrane elements on the surface 

5.1.1   Need for Critical Plane Fatigue analysis 

Before getting to the critical plane fatigue theory, it is important to understand uni-axial 
fatigue. Consider a small element subjected to uni-axial tension-compression cycle as 
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shown in Figure 37. The stress amplitude can be simply calculated and compared to 
amplitude in SN curve (eg. Figure 40), to find life.  

 
Figure 37: Uni-axial alternating stress example 

This is a simple scenario and rarely occurs with real-life loading conditions. Consider an 
element subjected to three different scenarios each with two load steps. This results in three 
different stress states as shown in Figure 38. Scenario 1 is the same as explained above. 
Scenario 2 is slightly complicated in which the element is subjected to bi-axial stresses, but 
principal axes orientation remains constant during both load step 1 and 2. In such a case, 
we know that maximum shear stress occurs on a plane inclined 450 to the principal axes 
and hence, maximum shear stress range occurs on the same plane. So, shear stress range 
can be calculated easily and mapped on to a SN curve to obtain life. Scenario 3 is like 
scenario 2 but in this case, principal axes orientation changes. Now the problem is how to 
calculate a “range” of stress which can be mapped onto uni-axial SN test data. In such 
problems,  the plane with maximum stress range cannot be easily determined. 

 
Figure 38 : Several loading scenario examples 
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Critical plane fatigue analysis is performed in case of non-proportionally varying stresses 
i.e., when principal stress directions change over the load cycle. The plane with maximum 
stress range and damage must be found using a computer code by incremental approach.  
Figure 39a shows stress component of a membrane element over the loading cycle Figure 
39 b shows an example of proportionally varying stresses. When stresses vary 
proportionally, the shown constant k is the varying component and the matrix remains same 
over the loading cycle. Hence, its eigenvectors do not change – principal stress directions 
remain same. From Figure 39a, it can be inferred that not all components vary in constant 
ratio with each other. Hence, critical plane analysis is required. 

 
Figure 39 : a) Stress state history of a membrane element b) example of proportionally 

varying stresses 



30 

There are several critical plane models available in literature. In this project, fatigue 
analysis is done as per a research [6] published in the international journal of fatigue. The 
method described in this research is chosen as it generalizes the determination of critical 
plane orientation for all kinds of metals (brittle and ductile). 

5.2 Ductile Iron S-N curve  

The S-N curve of ductile iron is obtained from [7]. Figure 40 shows the digitized curve and 
fitted equation. 

𝑓𝑓𝑁𝑁𝑁𝑁 = −10.69 ln𝑁𝑁 + 368.75 

Where 𝑓𝑓𝑁𝑁𝑁𝑁 is the finite life. The blue curve represents the finite life and the orange curve 
represents infinite life. 

 
Figure 40 : Ductile iron S-N Curve [7] 

5.3  Fatigue life prediction method 

This section describes the method for finding fatigue fracture plane, critical plane, fatigue 
damage and fatigue life as detailed in [6].  

The following definitions are critical to understanding the methodology. 

Fatigue Fracture Plane (FFP) -  Plane experiencing the maximum normal stress 
amplitude. 

Critical Plane – Plane on which fatigue damage is calculated. 

One of the major assumptions in this analysis is that the normal of the critical plane lies in 
the plane of the membrane element. Another assumption is that the given loads from AAM 
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are scaled by a factor of 2. In fatigue analysis, unscaled loads are to be used. Hence, using 
linear assumption (stress proportional to load), stresses are factored by a value of 0.5. 

Once fatigue fracture plane is determined based on the stress history of the membrane 
element, critical plane is at an angle α and is determined by the following relation [6]. 

 
Figure 41: Fatigue fracture and critical plane normals 

cos 2α =  
−2 + �4 − 4( 1

𝑠𝑠2 − 3)(5 − 1
𝑠𝑠2 −4𝑠𝑠2)

2(5 − 1
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Where 𝑠𝑠 =  𝑡𝑡−1
𝑁𝑁−1

. 𝑡𝑡−1 and 𝑓𝑓−1 are fully reversed fatigue limits of the material in pure shear 

and pure tension cases respectively. In this analysis it is assumed that 𝑠𝑠 =  1
√3

. It’s done so 

because typical value of 𝑠𝑠 for brittle metals is greater than 1
√3

 [6], and it means that the least 
possible shear fatigue limit (𝑡𝑡−1) is used. This results in a conservative analysis 

 the assumed value results in a conservative analysis.  

The proposed damage model is a nonlinear combination of normal and shear stress 
amplitudes as shown in the following equation. 
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Where 𝛽𝛽 is the critical damage value, 𝜎𝜎𝑎𝑎,𝑐𝑐 is the normal stress amplitude on the critical 
plane, 𝜏𝜏𝑎𝑎,𝑐𝑐 is the shear stress amplitude on the critical plane, 𝜎𝜎𝑚𝑚,𝑐𝑐 is the mean stress on 
the critical plane and 𝜂𝜂 is the mean stress correction factor.  This means that when the 
nonlinear combination of stress amplitudes exceed 𝛽𝛽, failure occurs. 

Once damage is computed for an element, fatigue life can be calculated by solving for 
𝑓𝑓𝑁𝑁𝑁𝑁 in the following Finite Life Equation. This equation was solved numerically using 
MATLAB. It is also assumed that ratio of finite life fatigue strengths, 𝑡𝑡𝑁𝑁𝑁𝑁

𝑁𝑁𝑁𝑁𝑁𝑁
=  1

√3
 . 

1
𝛽𝛽
��
𝜎𝜎𝑎𝑎,𝑐𝑐 �1 + 𝜂𝜂𝐹𝐹

𝜎𝜎𝑚𝑚,𝑐𝑐
𝑓𝑓𝑁𝑁𝑁𝑁

�

𝑓𝑓𝑁𝑁𝑁𝑁
�

2

+ (
𝑓𝑓𝑁𝑁𝑁𝑁
𝑡𝑡𝑁𝑁𝑁𝑁

)2(𝜏𝜏𝑎𝑎,𝑐𝑐)2 =  𝑓𝑓𝑁𝑁𝑁𝑁 

For each surface element stress history is extracted using python scripting in ABAQUS 
and fatigue life is computed as per the above method. A MATLAB code is developed to 
perform the computations. Figure 42 shows the flow chart for the algorithm developed. 

 
Figure 42 : Fatigue life prediction algorithm 

Initially all constants (𝑠𝑠,𝛼𝛼,𝛽𝛽,𝑓𝑓−1 and 𝜂𝜂), are input in the code.  The code then loops through 
each element’s stress history. Normal stress range on each plane (parametrized by angle θ) 
is then determined. The plane experiencing maximum normal stress range is fatigue 
fracture plane (FFP). Then critical plane is determined (which is at an angle 𝛼𝛼 to the FFP). 
The normal and shear stress amplitudes and mean normal stress on the critical plane are 
used to calculate fatigue damage for that element. If the damage is less than the critical 
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damage  𝛽𝛽, the element has infinite life (>5,000,000 cycles), if not finite life equations are 
numerically solved in MATLAB to obtain fatigue life. 

5.4 Results  

Once fatigue damage and life are computed for each element, it is necessary to view the 
results at all locations to find potential crack initiation sites. A python script is developed 
that reads the computed values from MATLAB and creates a custom plot in ABAQUS. 
Figure 43 shows the fatigue damage contour plots. The contour is capped at the critical 
damage value of 1 (𝛽𝛽 = 1  for 𝑠𝑠 =  1

√3
). So, the areas where damage exceeds the value 1 

are shown in grey. These grey areas have finite life. Figure 44 shows the fatigue life plots. 
In this figure, contour is reversed, and grey regions have infinite life. All regions which 
have finite life (< 5,000,000 cycles) are marked with rainbow contour.  

Although high cycle fatigue analysis indicates failure regions, because of higher strains 
(that would occur due to plasticity), stress life method cannot be used to accurately 
determine life. Strain life method using elastic-plastic material properties should be used 
to determine fatigue life accurately at these locations. However, it can be said that the 
regions with finite life or with damage greater than 1 are susceptible to fatigue failure. 

 
Figure 43: Fatigue damage plot 
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Figure 44 : Fatigue life plots 

5.5  Conclusions and Future work  

The weight of the differential case is reduced by 18.5 % with justifiable violations of the 
design criteria. Further weight can be reduced by creating geometry more closed to that 
obtained through topology optimization. Strain life methods can be explored to obtain 
accurate damage and life estimates at critical locations. 
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A Appendix 
This section contains Python and MATLAB scripts developed for the fatigue life 
evaluation, and design modification detail of the barrel region. 

A.1 Scripts 

Below is the python script that extracts stresses from ABAQUS and writes to a csv file. 

 
# Get ABAQUS interface 
from abaqus import * 
from abaqusConstants import * 
from odbAccess import * 
from abaqusConstants import * 
from odbMaterial import * 
from odbSection import * 
myOdb = session.openOdb(name='trial-27-itr9-rev.odb',readOnly = 
False)    # Open the odb 
session.viewports['Viewport: 1'].setValues(displayedObject=myOdb) 
b = 'Step-' 
myInstance = myOdb.rootAssembly.instances['DIFFCASE-1'] # Instance  
myElem = myOdb.rootAssembly.instances['DIFFCASE-
1'].elementSets['SET-26']   # Element Set of Surface 
Elements 
x=21  # Counter          
for stepName in myOdb.steps.keys(): # Loop over all Load  Steps  
 if stepName != 'Initial':  # Omit 'Initial' Step 
  a=[b,str(x),'.csv'] 
  c = ''.join(a)  # String for filename to write 
  file = open(c,'w')  
  lastFrame = myOdb.steps[stepName].frames[-1] # Frame 
  stressField = lastFrame.fieldOutputs['S'] # Stress Field 
  field = stressField.getSubset(region = myElem, position = 
INTEGRATION_POINT, elementType = 'M3D3') # Stress field of Surface 
Elements 
  fieldValues=field.values 
  for v in fieldValues: 
   ELID = v.elementLabel  # Loop over each Surface 
Element 
   file.write('%.1f \t\t %s \t\t %.1f\t\t %s \t\t 
%.1f\t\t %s \t\t %.1f\t\t \n' %(ELID,',',v.data[0], 
',',v.data[1],',', v.data[-1])) # Write Stress components  
  x=x+1 
  file.close()        
        # Close file 
myOdb.close()          
        # Close Odb 
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The extracted streses are then processed in MATBAB using the following code. 
MATLAB also outputs a data file that contains fatigue results used for post-processing 

 
%%  
clear 
clc 
%%  
s=1/sqrt(3); 
f1 = 196.4475575; 
t1 = f1*s; 
alp = 0.5*acos((-2+sqrt(4-4*((1/(s*s))-3)*(5-(1/(s*s))-
4*s*s)))/(2*(5-(1/(s*s))-4*s*s))); 
bet = sqrt(s*s*cos(2*alp)*cos(2*alp)+sin(2*alp)*sin(2*alp)); 
alp_rad = alp*180/pi; 
ni=0.05; 
inc = ni*alp;     
 
%% read files 
c1 = 'Step-'; 
c3 = '.csv'; 
el= csvread('Step-1.csv'); 
elist = el(:,1); 
nElem = length(elist); 
S=zeros(2,2,40,nElem); 
for j=1:40 
    c2 = string(j); 
    fileName = strcat(c1,c2,c3); 
    M = csvread(fileName); 
    for i =1:nElem 
        S(:,:,j,i) = 0.5*[M(i,2) M(i,4);M(i,4) M(i,3)]; 
    end 
 
end 
LF = zeros(1,nElem); 
th = inc:inc:pi; 
lth = length(th); 
dmg = zeros(1,nElem); 
for k=1:nElem 
    for v=1:length(th) 
        n = [cos(th(v));sin(th(v))]; 
        ns = [-sin(th(v));cos(th(v))]; 
        for j=1:40 
         sn(v,j) = dot(S(:,:,j,k)*n,n); 
         %st(v,j) = dot(S(:,:,j,k)*ns,ns); 
         st(v,j) = -0.5*(S(1,1,j,k)-
S(2,2,j,k))*sin(2*th(v))+S(1,2,j,k)*cos(2*th(v)); 
        end 
        snrange(v) = range(sn(v,:)); 
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    end 
    [maxv, indx] = max(abs(snrange)); 
    if (indx<=1/ni) 
        indx1 = indx+1/ni; 
        indx2 = lth + (indx-1/ni); 
    elseif (indx>lth-1/ni) 
        indx1 = indx+1/ni-lth; 
        indx2 = indx-1/ni; 
    else 
        indx1 = indx+1/ni; 
        indx2 = indx-1/ni; 
    end 
    snr1(1,k) = range(sn(indx1,:))*0.5;  
    snt1(1,k) = range(st(indx1,:))*0.5; 
    smn1(1,k) = (max(sn(indx1,:))+ min(sn(indx1,:)))*0.5; 
    snr2(1,k) = range(sn(indx2,:))*0.5;  
    snt2(1,k) = range(st(indx2,:))*0.5; 
    smn2(1,k) = (max(sn(indx2,:))+ min(sn(indx2,:)))*0.5; 
    if (smn1(1,k)<0) 
        smn1(1,k) = 0; 
    end 
    if (smn2(1,k)<0) 
        smn2(1,k) = 0; 
    end 
    dmg1(1,k) = 
sqrt(((snr1(1,k)*(1+smn1(1,k)*0.75/f1))/f1)^2+(snt1(1,k)/t1)^2); 
    dmg2(1,k) = 
sqrt(((snr2(1,k)*(1+smn2(1,k)*0.75/f1))/f1)^2+(snt2(1,k)/t1)^2); 
    dmg(1,k) = max(dmg1(1,k),dmg2(1,k)); 
    if dmg(1,k)<1 
        LF(1,k) = 10^7; 
    else 
      syms fnf1 
      syms fnf2 
      eqn1 = (1/bet)*sqrt((snr1(1,k)*(1+0.75*smn1(1,k)/fnf1))^2 + 
(1/s)*(1/s)*snt1(1,k)*snt1(1,k)) - fnf1 == 0; 
      eqn2 = (1/bet)*sqrt((snr2(1,k)*(1+0.75*smn2(1,k)/fnf2))^2 + 
(1/s)*(1/s)*snt2(1,k)*snt2(1,k)) - fnf2 == 0; 
      F1 = vpasolve(eqn1,fnf1,[1,1250]); 
      F2 = vpasolve(eqn2,fnf2,[1,1250]); 
      LF(1,k) = exp((368.75-max(double(F1),double(F2)))/10.961); 
    end   
end 
 
 
zer = zeros(1,nElem); 
DMG = transpose([transpose(elist);dmg;LF;zer;zer]); 
dlmwrite('dmglist.txt',DMG,'precision',8) 
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For the visualization of fatigue life and damage, another python script is developed which 
reads the MATLAB output and creates custom plots shown in Figure 43 and Figure 44, 
in ABAQUS. This code is shown below. 
 
from abaqus import * 
from abaqusConstants import * 
from odbAccess import * 
from abaqusConstants import * 
from odbMaterial import * 
from odbSection import * 
import numpy as np      # Import Numpy 
myOdb = session.openOdb(name='trial-27-itr9-fwd.odb',readOnly = 
False)      # Open the odb 
session.viewports['Viewport: 1'].setValues(displayedObject=myOdb) 
   
impData = np.genfromtxt('dmglist.txt', delimiter = ',')  
 # Read Damage File 
elementList = np.ascontiguousarray(impData[:,][:,0], dtype=np.int32) 
  # Get element List 
damageValues = np.ascontiguousarray(impData[:,][:,1:3], 
dtype=np.float32)   
myInstance = myOdb.rootAssembly.instances['DIFFCASE-1']  # Instance 
stepNew = myOdb.steps['Step-1']      # Step 
frame1 = stepNew.frames[-1]      # Frame 
sField = frame1.FieldOutput(name='dam_fat',description='Fat_Dam', 
type=TENSOR_3D_PLANAR, componentLabels=('S11', 'S22', 'S33','S12'), 
validInvariants=(MISES,)) # Create Field 
sField.addData(position=INTEGRATION_POINT, 
instance=myInstance,labels = elementList, data=damageValues) # Add 
values to the field 
stepNew.setDefaultField(sField) 
myOdb.close()  
myOdb = session.openOdb(name='trial-27-itr9-fwd.odb',readOnly = 
False)       # Open the odb 
session.viewports['Viewport: 1'].setValues(displayedObject=myOdb) 
  

A.2 Barrel region modifications 

 
It is mentioned in section 3.3.1 that barrel region is modified manually. The 
modifications done in this region are shown below. 
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Figure 45: Barrel region material removal 
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	Abstract

	Lightweight Innovations for Tomorrow (LIFT) is a consortium with several industries, universities and research institutes. It is operated by the American Lightweight Materials Manufacturing Innovation Institute (ALMMII). One of their projects, melt 5a...
	In this project, a differential case is being re-designed with the objective of at least 25% weight reduction, while meeting strength requirements. The baseline design is obtained from Eaton, a power management company and a supplier of automotive dif...

	1 Introduction
	Stringent emission regulations and the need to reduce costs drive the development of lightweight vehicles. Reducing the total vehicle weight by 50 kg cuts down CO2 emissions by 5g per km and increases fuel economy by 2% [1].
	A differential case is an essential component of a vehicle’s drivetrain. It acts as a structural member, transferring torque from the gearbox transmission to the axle shafts. It also acts as a carrier to internal gears, locking components, thrust wash...
	1.1 Overview
	American Axle and Manufacturing (AAM) is a manufacturer of automotive drivetrain products. The 8.6 axle differential shown in Figure 1 is supplied by Eaton to AAM who provided the design criteria described in section 1.4. The improvement in mechanical...
	Figure 1: (a) Differential assembly (AAM 2018) (b) Case (Eaton 2016)
	A ring gear is bolted to the flange of the case. It is meshed with a pinion gear connected to the engine transmission. The torque from the ring gear is transmitted to the cross shaft through the differential case. The case experiences torsional, bendi...

	1.2  Terminology
	Figure 2 shows different regions labeled. The ring gear body is simulated without the tooth profile. This is not significant as the ring gear is bulky and stiff. Dummy bodies are created to simulate the contact at cross-shaft region. Internal gears ar...
	Figure 2: Differential case regions

	1.3 Objective and scope of work
	The main objective of this project is to reduce the weight of the differential case by at least 25% while meeting strength and durability requirements. The process is carried in two different phases, topology optimization and static finite element ana...
	1.3.1 Topology Optimization
	In the 1st phase, topology optimization technique is used with manufacturing constraints to obtain optimal material distribution. A design is generated for maximum stiffness using a constrained fraction of bulk volume. A total of 72 load cases (36 eac...

	1.3.2 Static Stress and Fatigue Analyses
	In the 2nd phase, the refined geometry is parametrized and analyzed for static stress and fatigue life to qualify as per the design criteria. ABAQUS solver is used. The stress history of each surface element is then used to calculate fatigue damage an...
	A multi-axial critical plane approach is adopted [6] to analyze the High Cycle Fatigue (HCF) life.  A MATLAB code is developed to search for fatigue fracture plane, critical plane, fatigue damage and life (number of cycles). Python scripts were develo...


	1.4 Design Criteria
	The maximum torque transmitted is 5,875 N-m. The requirement is that there shouldn’t be any yielding at 5650 N-m torque (AAM 2018 [8]). The yield strength of the new ductile iron is determined to be 483 MPa. Maximum principal stresses shouldn’t exceed...

	1.5 Material Model
	A linear elastic material model shown in
	Table 1 is used. Material properties are obtained from Matweb [2].
	Table 1: Material properties - DI 7003

	1.6 Loading and Boundary Conditions
	The load path of the differential case is as follows – applied force on the ring gear pitch circle point creates a torque. This is transmitted to the cross-shaft through the differential case flange and body. There is counter torque from the cross-sha...
	The differential operates in two different loading scenarios. One when the vehicle moves in forward direction while the other when the vehicle moves in reverse direction. When the vehicle’s in motion, the ring gear contact point (which spans over 2-3 ...
	1.6.1 Loading
	The differential is analyzed at maximum torque of 5,875 N-m. All units in this report are in metric system N, mm, MPa & Sec. Table 2 and Table 3 show the forces applied on the differential case assembly.
	Table 2: Ring gear loads - at 5,875 N-m
	Table 3 : Internal gear and bearing pre-loads
	Figure 3 shows ring gear loads. A cylindrical co-ordinate system is created at the center as shown. The tangential force is applied at pitch circle point (radius 92.75 mm) that causes torque. The spiral profile of the ring gear causes thrust loads in ...
	Figure 3: Ring gear loads - a) Reverse cases b) Forward cases c) Loads at 10⁰ interval
	Figure 4 : Internal gear and bearing pre-loads
	Figure 4 shows the internal gear thrust loads and bearing preloads. These loads do not change with the position of ring gear load. Hence, they remain constant all throughout the loading cycle in both forward and reverse scenarios.

	1.6.2 Contacts and Constraints
	Figure 5 shows the contacts and constraints defined. Please note that constraints in this context means constraint equations in finite element method and not boundary conditions.
	Tie constraint is defined between the differential case flange and ring gear at the bolted interface – These surfaces behave as though they are ‘glued’. A multi-point constraint (MPC) with rigid beam formulation is defined between the center point and...
	Figure 5 : Contacts and Constraints

	1.6.3 Boundary Conditions
	Figure 6 shows the applied boundary conditions. These conditions are applied with respect to a cylindrical co-ordinate system at the origin as shown.  The differential case is supported on the axle housing using bearings shown in Figure 1. Hence, it c...
	The master node used to control dummy bodies is fixed only in X & Z-rotation and Y-translation (Urx = Urz = Uy = 0) with respect to global co-ordinate system (refer to the triad in Figure 6). The constrained X-rotation opposes the torque. Z-rotation a...
	Figure 6 : Boundary conditions



	2 Initial Analysis
	The baseline case is analyzed to identify critical locations, critical load steps and to compare future design iterations with. mesh convergence check is done to ensure that the stresses are converged.
	2.1 Results
	Figure 7 and Figure 8 show the von-Mises stress plots. The contours are capped at 450 MPa. Stresses exceeding this level are shown in grey. Critical regions are labeled as shown. Plots show different failure locations at several load steps.
	Figure 7 : Critical Locations – 1- von Mises stress plots
	Figure 8 : Critical locations – 2 - von Mises stress plots
	Figure 9 : Element sets at critical locations
	Figure 9 shows the element sets created in red. This is done to identify the maximum von-Mises stress history at these critical locations. Python scripting in ABAQUS is used to extract maximum stress at each location which is plotted in Figure 10. Not...
	Figure 10 : Max. von-Mises stress at all critical locations vs step number

	2.2 Mesh Quality
	Table 4 shows the element quality criterion. Stringent values are used compared to general suggested criterion [3]. Any element that violates these criteria should be warning elements (shouldn’t be in significant number) and not error elements. Figure...
	Table 4 : Element quality criteria
	Figure 11 : Mesh plot showing warning elements (yellow)

	2.3 Mesh Convergence
	In the previous section critical locations and load steps at which maximum von-Mises stresses are observed. Using this data, mesh convergence is done at these locations at their respective critical load steps.
	Mesh sizes ranging from 0.75 mm to 0.125 mm are locally applied at these locations and model is meshed.  Figure 11 shows the zoomed mesh plots with different local mesh sizes.
	Figure 12: Zoomed mesh plots
	Table 5: Mesh statistics
	2.3.1 Mesh convergence study results
	Figures 13 – 18 show the max. von – Mises stress at each critical location vs mesh size and percentage difference vs mesh size. Convergence is checked at multiple locations at multiple load steps. The convergence criteria are assumed to be satisfied w...
	Figure 13 : Stress and percent difference v. mesh size - Flange Fillet
	Figure 14 : Stress and percent difference v. mesh size - Bearing Fillet
	Figure 15 : Stress and percent difference v. mesh size - Big window fillet - 1
	Figure 16 : Stress and percent difference v. mesh size - Big window fillet - 2
	Figure 17 : Stress and percent difference v. mesh size - Internal fillet - 1
	Figure 18 : Stress and percent difference v. mesh size - Internal fillet – 2



	3 Topology optimization
	Topology optimization is one of several optimization techniques used to find optimal material distribution. With advancement in computational power and cutting-edge algorithms, optimization can be done within a reasonable time.
	3.1 Theory
	A basic optimization problem is finding minima or maxima for a given curve subjected to a set of constraints.
	For example [4],
	Minimize    𝑓(𝑥)= 𝑓(,𝑥-1.,,𝑥-2.,..,,𝑥-𝑛.) – objective function
	Subjected to    ,𝑔-𝑖.,𝑥.≤0  𝑖=1,2..,𝑚 – constraints
	𝑎≤,𝑥-𝑘 .≤𝑏
	Here,  𝑓(𝑥) is the objective function, ,𝑔-𝑖.,𝑥. is a set of constraints and ,𝑥-𝑘 .are the design variables. The function is numerically optimized by the software using gradient based or heuristic approaches.
	In the scope of structural optimization, an example problem can be defined with the objective of minimizing mass of an object while constraining deflection, stress, or natural frequency.
	3.1.1 Definitions
	Any optimization problem requires the following.
	 Design variable
	 Responses
	 Constraints
	 Objective
	A Design variable can be defined as a parameter that can be varied to optimize the model
	Responses are functions that need to be evaluated. These include an objective function and multiple functions upon which constraints can be placed
	Constraints are equations that all response functions except the objective function/response are subjected to.
	An Objective function is the main function that needs to be minimized or maximized.

	3.1.2 Structural Optimization
	Topology optimization problems are solved using density or SIMP method (Solid Isotropic Material with Penalization) methods [4] & [5] by the optimizer.  Element density (ρ) here refers to a parameter that each element in the FEM model is assigned. The...
	𝐾(𝑟) = ,ρ-𝑃. 𝐾   - (from [4])
	Where 𝐾(𝑟) is the penalized and 𝐾 is the original stiffness matrix. P is a penalizing factor which is greater than 1 (usually between 2 and 4) [4].
	The density of each element is a design variable. Responses are evaluated after penalizing stiffness of each element for various values of ρ. Through iteration, this determines the ‘importance’ of that element. Finally, densities where the given objec...


	3.2 Optimization method
	Altair Optistruct is chosen as the solver. Initial analysis in section 2.1 helped identify critical regions. This information is used in the optimization process as well. The main aim is to reduce the mass of the differential case. The optimizer is in...
	3.2.1 Design variables
	Features on flange and bell ends that were not critical to the functionality are removed and filled with bulk material as shown in Figure 19. The bulk material is then defined as the design volume/space (in cyan and pink) containing design variables. ...
	Figure 19 : The volumes at flange and bell ends constitute the design space

	3.2.2 Responses
	The optimizer evaluates the defined responses in every iteration to monitor and predict variables.
	Volume fraction is defined as one of the responses. When the density of each element is varied between 0 and 1, in each iteration, the effective volume is calculated by multiplying actual volume of the element by the density. Volume fraction is the ra...
	Weighted local compliance of regions shown in Figure 20 is defined as another response. Compliance is defined as flexibility or inverse of stiffness. Collectively, the total compliance of the local regions is calculated by the optimizer using strain e...
	𝐶=(,𝑤-1.∗,𝐶-1.+…+,𝑤-72.∗,𝐶-72.)/(,𝑤-1.+ ..,𝑤-72.)
	Where 𝐶 is the total weighted compliance, ,𝐶-𝑛. is the total local compliance at nth load step and ,𝑤-𝑛. is the weight assigned to that load step. In this analysis, all weights are given the value 1.
	In Optistruct, local compliance can be defined for each load step using DRESP 2/L and weighted compliance using DEQUATION ‘cards’ as shown in Figure 21.
	Figure 20 : Critical regions for which local compliance response is defined
	Figure 21: FEM settings - a) Compliance response regions (in white); b) DRESP 2/L card

	3.2.3 Optimization Constraints
	A constraint is placed on the volume fraction. The condition is that the final volume fraction should not exceed 35% of the bulk, initial volume.
	A manufacturing constraint to produce a design that will allow the casting die to be pulled is defined by setting a draw direction.
	Figure 22: a) Die pull out direction constraints b) Example of draw constrains from [4]
	Also, a minimum member size of 5 mm is defined using MINDIM ‘card’ in optistruct.

	3.2.4 Objective Function
	The Objective is set to minimize weighted local compliance of regions (elements) shown in Figure 20. Minimizing compliance is synonymous with minimizing strain energy. So, the objective is to generate a design that minimized strain energy in critical ...


	3.3 Optimization Results
	The optimizer solves all load cases in each iteration and finally outputs element densities that satisfies the objective. Element densities can be plotted in Hyperview that show the optimal material distribution. Figure 23 shows element density plots ...
	Figure 23 : Topology results - element density plots
	3.3.1   Geometry refinement
	The obtained topology from Optistruct is crude and often impractical to manufacture due to irregular topology. Hence, it is exported to a CAD software. In this project NX 11.0 is chosen as CAD tool. The imported topology is refined to create manufactu...
	Figure 24 : Geometry refinement process
	Figure 25 : Parametrized geometry - flange end
	Figure 26 : Parametrized geometry - bell end
	Figure 27: Parametrized geometry - barrel region
	Figures 25-27 show different regions where dimensions are parametrized. Note that during topology optimization, only flange and bell end regions were optimized. Due to difficulty in including manufacturing constraints at barrel region, it is not optim...



	4 Re-Analysis
	4.1 Results
	In the previous section, the obtained topology only satisfies maximum stiffness/minimum compliance criterion. It must be further tweaked to ensure stresses at critical locations are not exceeding the limit. It is done manually in few iterations by ana...
	Because of the high number of parameters, the sensitivity study of each parameter wasn’t feasible. Key parameters were identified, and the dimensions are varied for optimizing. Since material is removed compared to the original design, stresses are bo...
	It should be noted that the forces listed in Table 2 and Table 3 are at a torque of 5875 N-m, but the design criteria provided by AAM dictates that the stresses are to be evaluated at 5650 N-m torque. Since, these torques are almost same (factor of 0....
	The flange end tweaking was simple as critical regions are not affected by the parameters at this end. The bell end thickness however, affects the stresses at internal fillets (shown in Figure 28). The sub-pictures to the right show stress plot of few...
	Figure 28 : Max. Principal stress plots -  internal fillet 1
	Figure 29: Max. Principal stress plots -  internal fillet 2
	Figure 30: Max. Principal stress plots -  internal fillet 3
	Figure 31: Max. Principal stress plots  - Flange fillet
	Figure 32: Max. Principal stress plots - Big window fillet 1
	Figure 33 :  Max. Principal stress plots - Big window fillet 2
	Figure 34: Max. Principal stress plots - Window region
	Figure 35: Max. Principal stress plots -Internal corner region

	4.2 Summary
	Table 6 summarizes the max. principal stresses at all critical locations and load steps. Only two locations (Figure 29 and Figure 35) where stresses exceeding 10% compared to baseline are found. These can be justified because max. stresses at other lo...
	Table 6 : Results Summary


	5 Fatigue analysis
	Since the differential is a rotating component that experiences cyclic loading, and hence, fatigue analysis is of interest. Fatigue failure is a surface phenomenon and crack initiation occur on the surface. Hence stress histories of points on the surf...
	5.1 Surface Stress extraction
	It is important to note that surface stresses are 2D in nature in most cases. For 3D elements, accurate stresses can be obtained only at integration points which are not on the surface of the element. To obtain surface stresses, a layer of ‘membrane –...
	Figure 36 : Membrane elements on the surface
	5.1.1   Need for Critical Plane Fatigue analysis
	Before getting to the critical plane fatigue theory, it is important to understand uni-axial fatigue. Consider a small element subjected to uni-axial tension-compression cycle as shown in Figure 37. The stress amplitude can be simply calculated and co...
	Figure 37: Uni-axial alternating stress example
	This is a simple scenario and rarely occurs with real-life loading conditions. Consider an element subjected to three different scenarios each with two load steps. This results in three different stress states as shown in Figure 38. Scenario 1 is the ...
	Figure 38 : Several loading scenario examples
	Critical plane fatigue analysis is performed in case of non-proportionally varying stresses i.e., when principal stress directions change over the load cycle. The plane with maximum stress range and damage must be found using a computer code by increm...
	Figure 39 : a) Stress state history of a membrane element b) example of proportionally varying stresses
	There are several critical plane models available in literature. In this project, fatigue analysis is done as per a research [6] published in the international journal of fatigue. The method described in this research is chosen as it generalizes the d...


	5.2 Ductile Iron S-N curve
	The S-N curve of ductile iron is obtained from [7]. Figure 40 shows the digitized curve and fitted equation.
	,𝑓-𝑁𝑓.=−10.69,ln-𝑁.+368.75
	Where ,𝑓-𝑁𝑓. is the finite life. The blue curve represents the finite life and the orange curve represents infinite life.
	Figure 40 : Ductile iron S-N Curve [7]

	5.3  Fatigue life prediction method
	This section describes the method for finding fatigue fracture plane, critical plane, fatigue damage and fatigue life as detailed in [6].
	The following definitions are critical to understanding the methodology.
	Fatigue Fracture Plane (FFP) -  Plane experiencing the maximum normal stress amplitude.
	Critical Plane – Plane on which fatigue damage is calculated.
	One of the major assumptions in this analysis is that the normal of the critical plane lies in the plane of the membrane element. Another assumption is that the given loads from AAM are scaled by a factor of 2. In fatigue analysis, unscaled loads are ...
	Once fatigue fracture plane is determined based on the stress history of the membrane element, critical plane is at an angle α and is determined by the following relation [6].
	Figure 41: Fatigue fracture and critical plane normals
	,cos-2α.= ,−2+,4−4(,1-,𝑠-2..−3)(5−,1-,𝑠-2..,−4𝑠-2.).-2(5−,1-,𝑠-2..,−4𝑠-2.).
	Where 𝑠= ,,𝑡-−1.-,𝑓-−1... ,𝑡-−1. and ,𝑓-−1. are fully reversed fatigue limits of the material in pure shear and pure tension cases respectively. In this analysis it is assumed that 𝑠= ,1-,3... It’s done so because typical value of 𝑠 for brittle...
	the assumed value results in a conservative analysis.
	The proposed damage model is a nonlinear combination of normal and shear stress amplitudes as shown in the following equation.
	,,,,,𝜎-𝑎,𝑐.,1+𝜂,,𝜎-𝑚,𝑐.-,𝑓-−1...-,𝑓-−1...-2.+,(,,𝜏-𝑎,𝑐.-,𝑡-−1..)-2..= 𝛽
	𝛽=,,,cos-2.-2𝛼.,𝑠-2.+,,sin-2.-2𝛼..
	𝜂= ,3-4.+,1-4.(,,3.−,,𝑓-−1.-,𝑡-−1..-,3.−1.)
	Where 𝛽 is the critical damage value, ,𝜎-𝑎,𝑐. is the normal stress amplitude on the critical plane, ,𝜏-𝑎,𝑐. is the shear stress amplitude on the critical plane, ,𝜎-𝑚,𝑐. is the mean stress on the critical plane and 𝜂 is the mean stress corre...
	Once damage is computed for an element, fatigue life can be calculated by solving for ,𝑓-𝑁𝑓. in the following Finite Life Equation. This equation was solved numerically using MATLAB. It is also assumed that ratio of finite life fatigue strengths, ,...
	,1-𝛽.,,,,,𝜎-𝑎,𝑐.,1+,𝜂-𝐹.,,𝜎-𝑚,𝑐.-,𝑓-𝑁𝑓...-,𝑓-𝑁𝑓...-2.+,(,,𝑓-𝑁𝑓.-,𝑡-𝑁𝑓..)-2.,(,𝜏-𝑎,𝑐.)-2..= ,𝑓-𝑁𝑓.
	For each surface element stress history is extracted using python scripting in ABAQUS and fatigue life is computed as per the above method. A MATLAB code is developed to perform the computations. Figure 42 shows the flow chart for the algorithm develo...
	Figure 42 : Fatigue life prediction algorithm
	Initially all constants (𝑠,𝛼, 𝛽,,𝑓-−1. and 𝜂), are input in the code.  The code then loops through each element’s stress history. Normal stress range on each plane (parametrized by angle θ) is then determined. The plane experiencing maximum norma...

	5.4 Results
	Once fatigue damage and life are computed for each element, it is necessary to view the results at all locations to find potential crack initiation sites. A python script is developed that reads the computed values from MATLAB and creates a custom plo...
	Although high cycle fatigue analysis indicates failure regions, because of higher strains (that would occur due to plasticity), stress life method cannot be used to accurately determine life. Strain life method using elastic-plastic material propertie...
	Figure 43: Fatigue damage plot
	Figure 44 : Fatigue life plots

	5.5  Conclusions and Future work
	The weight of the differential case is reduced by 18.5 % with justifiable violations of the design criteria. Further weight can be reduced by creating geometry more closed to that obtained through topology optimization. Strain life methods can be expl...
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	A Appendix

	This section contains Python and MATLAB scripts developed for the fatigue life evaluation, and design modification detail of the barrel region.
	A.1 Scripts

	Below is the python script that extracts stresses from ABAQUS and writes to a csv file.
	The extracted streses are then processed in MATBAB using the following code. MATLAB also outputs a data file that contains fatigue results used for post-processing
	A.2 Barrel region modifications

	Figure 45: Barrel region material removal


